

ZP04 Flammable Gas Detection Module (Model:ZP04)

Manual V1.1

Zhengzhou Winsen Electronics Technology Co., Ltd

Statement

This manual's copyright belongs to Zhengzhou Winsen Electronics Technology Co., LTD. Without the written permission, any part of this manual shall not be copied, translated, stored in database or retrieval system, also can't spread through electronic, copying, record ways.

Thanks for purchasing our product. In order to let customers use it better and reduce the faults caused by misuse, please read the manual carefully and operate it correctly in accordance with the instructions. If users disobey the terms or remove, disassemble, change the components inside of the sensor, we shall not be responsible for the loss.

The specific such as color, appearance, sizes &etc., please in kind prevail.

We are devoting ourselves to products development and technical innovation, so we reserve the right to improve the products without notice. Please confirm it is the valid version before using this manual. At the same time, users' comments on optimized using way are welcome.

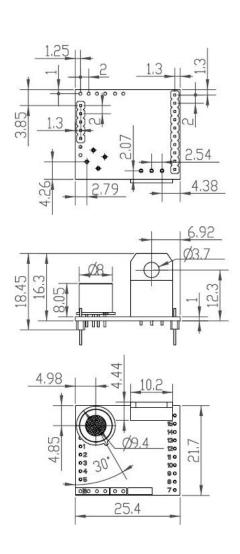
Please keep the manual properly, in order to get help if you have questions during the usage in the future.

Zhengzhou Winsen Electronics Technology CO., LTD.

ZP04 Flammable Gas Detection Module

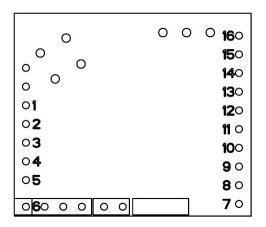
Profile

ZP04 adopts semiconductor sensor, which has basic functions of household gas leak alarm, electric power light, warm-up light, fault lamp, output signal of alarm lamp; buzzer, relay, output signal of electromagnetic valve; input signal of testing button, canceling warm-up button input. This module can be used for complete device development of household gas leak alarm.

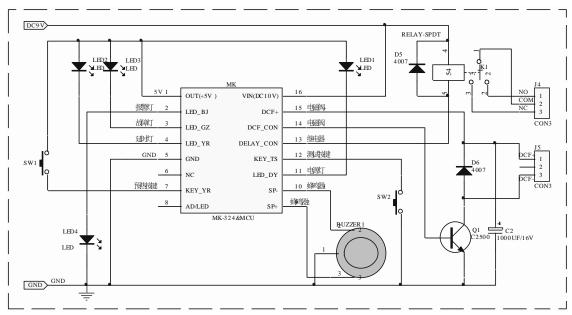


Application

Household gas leak alarm, gas leak controller


Parameters

Model	ZP04	
Detection Gas	Natural gas, LPG, Artificial coal	
Detection das	Gas	
Detection Range	1~25%LEL	
Type of sensor	Flat surfaced semiconductor type	
Response time	< 30s	
Resume time	< 50s	
Working Voltage	9~12 V	
Working Current	< 80mA	
	To be external connection with 4	
Output	LED, 2 buttons,1 buzzer, 1 DC	
	relay and 1 electromagnetic valve	
Accuracy	±3%LEL	
Expected Lifespan	>2 year	
Standard Working	Temperature:-10 ∼ 55°C	
Conditions	Humidity:0 ~ 95%RH	
Storage	Temperature:-20 ∼ 70°C	
Conditions	Humidity:20% \sim 95%RH	
Dimension:	25.4x21.7x22.6mm (LxWxH)	


Pin Function Description

Caution: When VCC=5V, the minimum of high level is 4.2V (10mA Source Current), and the maximum of low level is 0.7V (10mA Sink Current).

F:	·	<u> </u>	
Pin No.	Function	Functional description	
Pin1	DC5V	+5V output	
Pin2	Alarm lamp LED drive	To output high level when alarming	
Pin3	Fault lamp LED drive	To output low level when it has fault	
Pin4	Warm-up lamp LED drive	To output low level during the warm-up course	
Pin5	GND	Direct current supply	
Pin6	NC	Hang in the air	
Pin7	Kayatraka	To cancel warm-up by knobbing down this button	
	Keystroke	during the warm-up course	
Pin8	NC	Hang in the air	
Pin9	Buzzer drive 1	Piezoelectric buzzer (three-terminal)oscillator output	
Pin10	Buzzer drive 2	Piezoelectric buzzer (three-terminal)oscillator output	
Pin11	Electric Power lamp LED drive	To output low level during normal operating period	
Din 10	Mayatraka	To detect basic function by knobbing down this	
Pin12	Keystroke	button during normal operating period	
Pin13	Relay drive	To output low level and connect with relay directly	
Pin13	Relay unive	when giving alarm	
Pin14	Electromagnetic valve	To output high level when giving alarm(specific refer	
F11114	drive	to application circuit)	
Pin15	Electromagnetic valve	To charge electromagnetic valve in voltage	
	drive	regulation and capacity during normal operating	
	unve	period	
Pin16	VCC	Modular power input +9V	

Application Principles

ZP04 recommended diagram of application principle

Diagram of application principle BOM

No	Material label	Material name	Model and specification of material	Quantity
1	MK	Module	ZP04Module	1
2	D1、D2	Kenotron tube	1N4007	2
3	LED1	Light emitting diode	Green	1
4	LED2、LED3	Light emitting diode	Yellow	2
5	LED4	Light emitting diode	Red	1
6	K1	Dynatron	DC9V	1
7	Q1	Buzzer	C2500	1
8	LS1	Feather-touch switch	9V piezoelectric buzzer	1
9	SW1、SW2	Electrolytic capacitor		2
10	C1	Dynatron	1000uF/16V	1

Installation instruction

This module connects with external part by adopting PH2.0 configuration of single-row inserting pin. When using it, you just need insert the module into pre-set circuit. If the joint strength of the module need to be enhanced, you can weld the module on the circuit board directly.

Calibration

Required equipment: DC12V-adjustable electric power, air box with vent fan, injector, sample gas bag, ZP04-calibrated fixture.

- A. Calibration method of alarm point 1: install the module on ZP04-calibrated fixture and being aged by switching on electric power for 3 minutes. Through inject into the definite concentration of gas and adjust the comparative-point potentiometer, ZP04 will be on the state of alarm, and this point is comparative-point alarm.
- B. Calibration method of alarm point 2: According to the particularity of sensor, you can work out the value of alarm point. When ZP04 is welding, the potentiometer will be substituted by the fixed resistance, and this point is comparative-point alarm.
- C. Inspection of alarm point: Open the box of calibration, then make module connect up electric power again till warm-up of module is over. Now make a good seal of the air box, and then inject gas into the air box slowly to inspect whether the alarm point of module is satisfied to requirements. If not, please repeat the above steps.

Precautions

- 1. The module should be calibrated in the environment of undisturbed gas.
- 2. Do not make the module contact with high concentration gas for long time, or the sensitivity will decline rapidly.
- 3. Although the module has a good capability of anti-seismic, it should not be shocked excessively.

Cautions

1 .Following conditions must be prohibited

1.1 Exposed to organic silicon steam

Module will lose sensitivity and never recover if it absorbs organic silicon steam. Module must avoid exposing to silicon bond, fixature, silicon latex, putty or plastic contain silicon environment.

1.2 High Corrosive gas

If the sensors are exposed to high concentration corrosive gas (such as H2S, SOX, Cl2, HCl etc.), it will not only result in corrosion of sensors structure, also it cause sincere sensitivity attenuation.

1.2 High Corrosive gas

If the module is exposed to high concentration corrosive gas (such as H2S, SOX, CI2, HCI etc.), it will not only result in corrosion of sensor's heating material and pins, also it causes

sensitivity and performance attenuation.

1.3 Touch water

Sensitivity of the sensors will be reduced when spattered or dipped in water.

1.4 Freezing

Do avoid icing on sensor's surface, otherwise sensing material will be broken and lost sensitivity.

2 .Following conditions must be avoided

2.1 Water Condensation

Indoor conditions, slight water condensation will influence sensors' performance lightly. However, if water condensation on sensing material surface and keep a certain period, sensors' sensitive will decrease.

2.2 Used in high gas concentration

No matter the sensor is electrified or not, if it is placed in high gas concentration for long time, sensors characteristic will be affected. If lighter gas sprays the sensor, it will cause extremely damage.

2.3 Long time storage

The sensors resistance will drift reversibly if the module is stored for long time without electrify, this drift is related with storage conditions. Modules should be stored in airproof bag without volatile silicon compound. For the modules with long time storage but no electrify, they need long galvanical aging time for stability before using. The suggested aging time as follow:

Stable3.

Storage Time	Suggested aging time
Less than one month	No less than 48 hours
1 ~ 6 months	No less than 72 hours
More than six months	No less than 168 hours

2.4 Long time exposed to adverse environment

No matter the modules electrified or not, if exposed to adverse environment for long time, such as high humidity, high temperature, or high pollution etc., it will influence the module's performance badly.

Zhengzhou Winsen Electronics Technology Co., Ltd

Add: No.299, Jinsuo Road, National Hi-Tech Zone, Zhengzhou

450001 China

Tel: +86-371-67169097/67169670

Fax: +86-371-60932988

E-mail: sales@winsensor.com
Website: www.winsentech.com